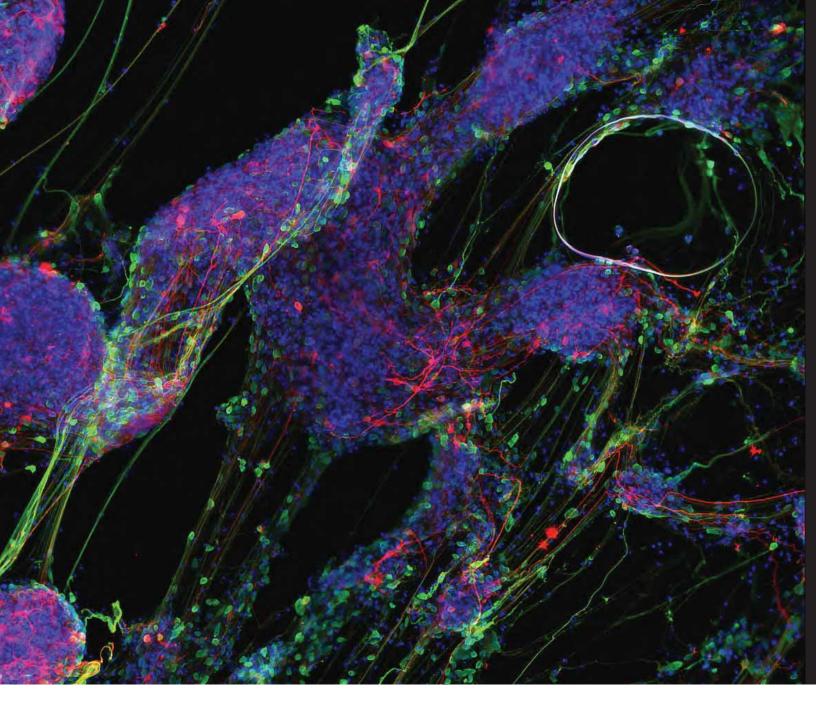


All-in-One Fluorescence Microscope

BZ-X Series

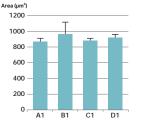

Modular design expands as your research changes Automated High-Resolution Microscope for Life Science Research Simple setup and easy operation for outstanding research results

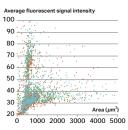
Built-in Darkroom, Space Saving

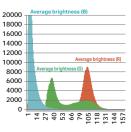
A specimen enclosure is built into the body of the microscope, allowing users to perform fluorescence imaging even in a brightly-lit room The compact design means the unit can be set up in any location for optimal testing efficiency

Any User Can Easily Capture Images

No complicated configuration required With a single click, any user can capture publication-quality images


Batch Analysis of Large Data Sets


Capture and analyze in dramatically shorter time frames than with conventional microscopes for increased testing reliability and throughput

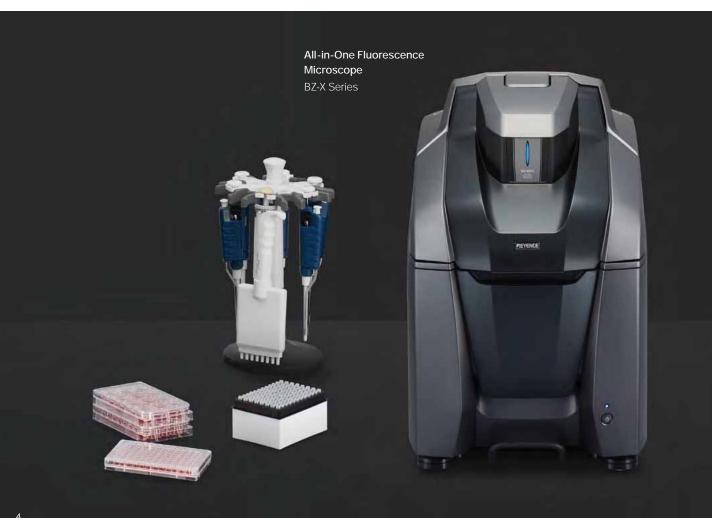

Image cytometer module

Copying settings enables bulk observation and analysis in one operation

All-in-One System

Enhanced Core Performance

No darkroom required

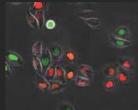

- High-contrast fluorescence imaging even in a brightly-lit
- room Enables an optimal working environment with space-saving design

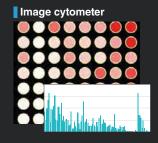
Full digital control

All processes controlled within an easy-to-use software
High reproducibility and user independent imaging
Remote operation

Publication-quality images

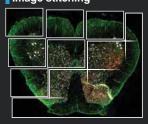
- Built-in high-sensitivity, highresolution cooled monochrome camera
- Supports clear fluorescence, brightfield, and phase contrast observation over a range of samples

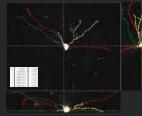

Expandable Design

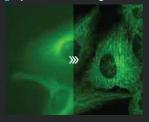

Adapts to Fit Your Research Needs

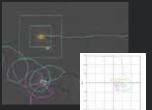
Well scanning

Live cell imaging

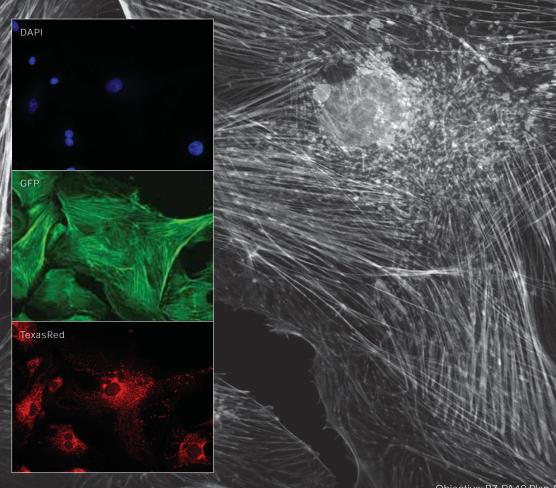



Video capturing


Image stitching


3D measurement and analysis

Optical sectioning



Motion analysis

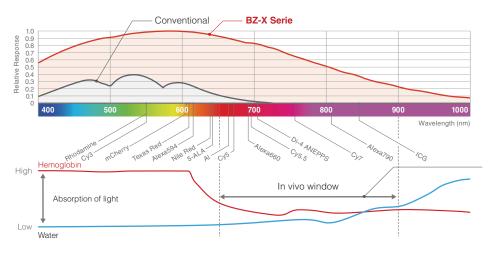
Built-in high-sensitivity cooled monochrome camera and high-intensity LED light source

Advanced Observation Delivers High-Resolution Images

Objective: BZ-PA40 Plan Apochromat 40×(Dry)

Cooled CCD

Even when a CCD is not exposed to any light, dark current signals are generated and create unwanted noise in an image. This noise is largely temperature-dependent, increasing as a CCD gets warmer. The Peltier-cooled CCD in the BZ-X Series is cooled to 25°C 45°F below the ambient temperature to achieve high-sensitivity imaging with little noise.

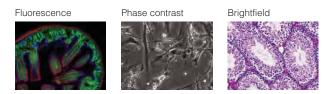

Bright, High-definition Imaging

Low noise, high sensitivity

The cooled monochrome camera provides clear images that combine high sensitivity and low noise. This enables clear fluorescence imaging even with low excitation light, minimizing both photobleaching and damage to cells sensitive to phototoxicity.

High sensitivity across short and long wavelengths

The camera is also able to image dyes such as Cy7 in the near-infrared range, allowing for observation of cells located even in deep tissue layers. Additionally, it uses a high-intensity LED as the fluorescence light source for its broad wavelength range from UV through to IR. It supports a range of fluorescence pigments without adding a light source, simply by changing filters.

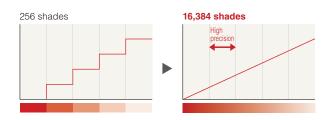

The 650 to 900 nm wavelength range is referred to as the "in vivo window." With low levels of autofluorescence and light scattering in this range, long-wavelength fluorescent dyes are ideal for visualizing deep regions of living tissue.

One-click monochrome/color switching camera

Switching between color and monochrome imaging modes can be easily performed with just one click. An electronic liquid crystal filter enables high-definition 3CCD imaging with superior color reproducibility. This creates ideal conditions for brightfield applications such as H&E, DAB, and similar dyes.

High versatility across various samples

The system supports fluorescence, brightfield, and phase contrast imaging. Users can observe various specimens in different vessel types, enabling versatility across a wide range of experiments.



Accurate Detection for Reliable Data

Unlike color cameras, the CCD element does not use color filters. This eliminates variations in light quantities received on the CCD due to the fluorescence color. This allows for accurate quantification of fluorescence intensity, which is important for evaluating properties such as protein weights.

14-bit, high-level gradation

Data capturing with 16,384 gradations allows for accurate measurement of expression levels and precise quantification.

Stable light intensity over a long period

The BZ-X800LE has a fluorescence light source that incorporates a long-life LED lamp. Stable light intensity is secured both in the short term and in the long term, and quantitative comparison is possible even for data that was captured on different days.

Time

Large motorized stage equipped to observe an entire well plate

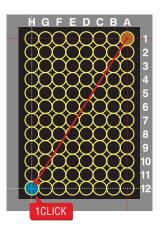
Easy Operation for Dramatically Improved Observation

Anti-vibration construction

The BZ-X Series uses a floating stage structure with anti-vibration dampers to stabilize high-precision imaging. High magnification capture, image stitching, and observation of cultured cells in liquid media can be performed anywhere, unaffected by vibration.

Variety of containers supported

Sample holders for slides, dishes, flasks, and multi-well plates are included. Sample holders for special containers are also available upon request.



Easy Navigation

Stage view

Users simply click a point on the stage map to instantly navigate to that location on the sample. Even with large well plates, users can find regions of interest quickly and easily.

The map and motorized stage are linked with high precision The encoded stage moves instantly to the clicked location.

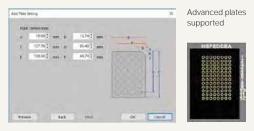


Plate customisation function

Create plate maps for use in experimental systems that use advanced plates, as well as for conventional plates in order to greatly improve the efficiency of daily observation work.

Point memo

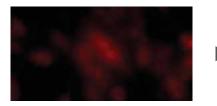
Record coordinates of regions of interest. Click the point memo to instantly return to that location.

Six-mount electronic lens revolver

Both field of view and focus can be maintained even when changing magnification for easy observation.

Any combination

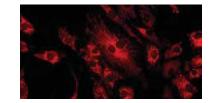
Oil-immersion lenses Magnification 2–100×


Dry lenses Phase contrast lenses

Fast and Easy Focusing

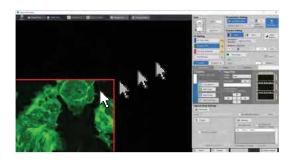
High-speed auto focus

With a single click, instantly focus on any sample in fluorescence, brightfield, or phase contrast at any magnification. The rapid auto focus uses a high-sensitivity partial scan mode in the Z axis.

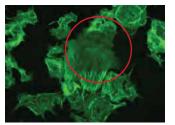

One-click auto focus

High-sensitivity partial scan for high-speed processing

Accurate focus

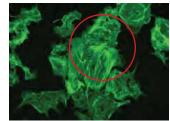

High-sensitivity partial scan

By combining the CCD's partial reading and binning processing, this mode enables the display of images with even higher sensitivity. Weak fluorescence signals normally require a long exposure time, but this mode makes it possible to read them at high speed for rapid focusing. The BZ-X Series uses a dedicated focus control motor for high-precision control in the Z axis for accurate, user-independent auto focus.


High-Efficiency Imaging

Low photobleach mode

When changing the focus or field of view, the excitation light is only pulsed long enough to display an image. The excitation light is then turned off until another adjustment is made, minimizing photobleaching and prolonging the life of the specimen.



Conventional

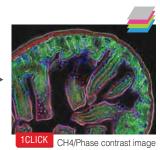
Photobleaching during high-magnification observation leads to sample damage with irregularities in brightness

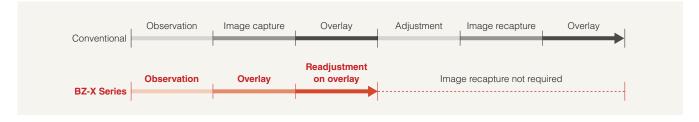
Low photobleach mode

Photobleaching is minimized, resulting in uniform brightness

Real-time overlay

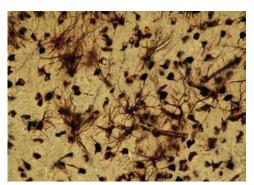
Capture settings such as focus and exposure time on an overlaid image can be viewed and adjusted prior to image capture. On a conventional system, a multi-channel overlay would need to be captured, adjusted, and recaptured to obtain the desired result. The BZ-X Series saves time by providing a real-time overlay prior to image capture.


1CLICK CH1/DAPI image



1CLICK CH2/GFP image

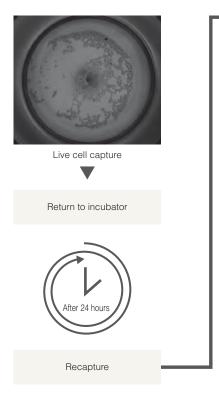
1CLICK CH3/TexasRed image

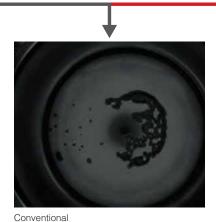


Quick full focus

With a single click, the system automatically scans the height of the sample and creates a fully-focused composite image in realtime. This greatly reduces the time and effort required to interpret several partially-focused images of a thick target.

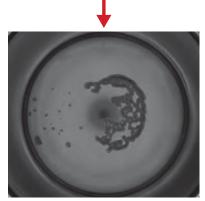
Rat brain, Golgi staining Sample courtesy of Dr. Seiji Otani, Cell Technology Laboratory


One-click, automatic scanning


Fully-focused image

Capture Condition Reproducibility

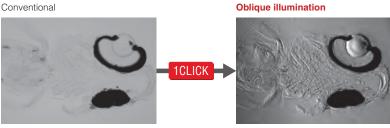
Load capture settings


Capture conditions such as the filter settings, magnification, exposure time, and capture position can be read from previous images for easy reproducibility. Any user can capture images using the same conditions, eliminating variability between operators. This also allows for accurate observation of changes over time, with a higher degree of repeatability.

Manual location Manual condition Less accurate search reproduction image capture

Users must keep track of what settings were used, such as the location coordinates and exposure time, and then manually reproduce them in future captures. This takes time and decreases accuracy.

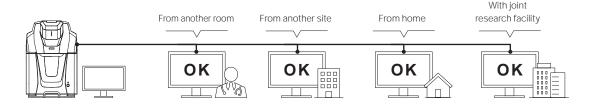
BZ-X Series


Load setting	Accurate, fast capture	High reproducibility, saves time

Every setting such as location coordinates, exposure time, imaging channel, and magnification are automatically saved with each image. These conditions can then be loaded directly from an image, saving time and ensuring experiment accuracy.

Enhance contrast of unstained transparent specimens

Oblique illumination


Observe images similar to those obtained by using differential interference contrast (DIC), but without any additional lenses, prisms, or other hardware. Unlike DIC, this technique can be performed through plastic containers, making it suitable for observing ova and other clear specimens.

Zebrafish

Fully Motorized to Support Remote Control

All processes from imaging to analysis are performed with a PC, allowing remote control via a network. Observation and analysis can be performed while holding discussions with off-site joint research facilities. Among a host of possible uses, the microscope can be utilized in laboratories that cannot be accessed frequently due to a high biosafety level, and as a tool to reduce crowding in laboratories.

Enhanced Observation and Analysis

Expandable to support diverse applications while maintaining ease-of-use

The built-in configuration includes all of the hardware required for the optional modules. Upgrades are easy and fast for on-demand expandability. The software interface remains the same as modules are added, allowing users to easily operate the system after upgrading.

LED transmitted illumination

The long-lifetime LED has little to no change in color temperature over time. This allows for accurate hue representation in brightfield, ideal for quantification.

Large motorized XY stage

With a movable range of $114 \times 80 \text{ mm } 4.49^{\circ} \times 3.15^{\circ}$, an entire well plate can be imaged. The stage can be controlled down to 1 µm for high-precision scanning.

NEW

High-intensity LED excitation lighting

Strong lighting is provided over a wide wavelength range, from below 400 nm to above 700 nm, to support a range of fluorescent dyes simply by changing fluorescence filters. There is minimal fluctuation in light intensity over time, making this microscope perfect for quantitative evaluation using the strength of the fluorescence signal.

Electronic filter turret

Electronic projection element

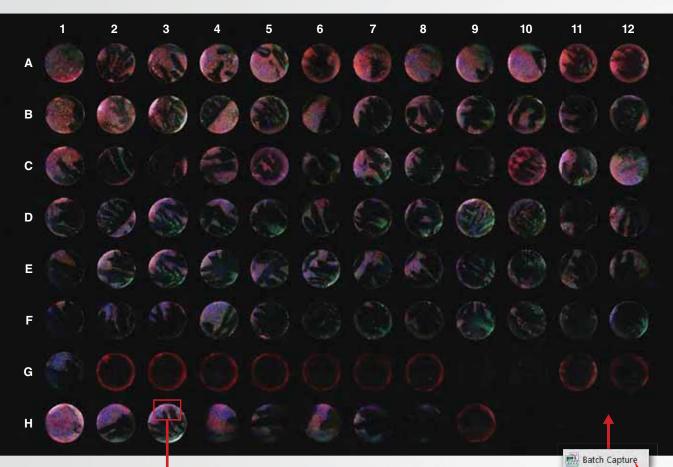
With a single click, the electronic projection element creates a structured illumination pattern for optical sectioning capture. As opposed to a mechanical component, the electronic element enables high-speed and more customizable projection patterns.

Six-mount electronic lens revolver

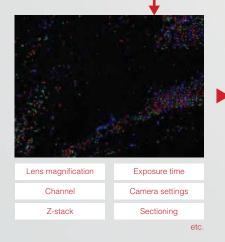
Lenses are positioned to facilitate stable, continuous capture of various points and conditions. With phase contrast and oil-immersion lenses, applications ranging from cultured cells to sectioned tissue can be imaged on a single platform. The lens can be controlled down to a 0.1 μ m step size in the Z axis for high-precision 3D analysis.

Observation and Capture Modules

BZ-H4XI Image Cytometer Module Batch capture and analysis of large amounts of data, including well plates.	▶ p.14	
BZ-H4XD Advanced Observation Module High-precision image stitching and Z-stacking for multilayer capture.	▶ p.16	
BZ-H4XF Sectioning Module Optical sectioning capture with structured illumination.	► p.20	
BZ H4X1 Time-lapse Module Automated capture at user-specified intervals for video and time-series measurements.	► p.24	

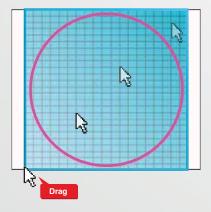

Analysis Applications

BZ-H4C/BZ-H4CM Hybrid and Macro Cell Count KEYENCE's original algorithm enables accurate quantification of image data.	▶ p. 26	Ratio 20.5%
BZ-H4R		
3D Application		
Creation of 3D images from Z-stack data. 3D measurement of localization and configuration available.	► p.30	
вz-н4К		
Motion Analysis Application		
Tracking of user-specified targets to measure travel range, speed, and coordinate positions.	► p.32	
BZ-H4M		
Measurement Application		
Manual 2D measurements, including area.	▶ p.33	An inter the in the

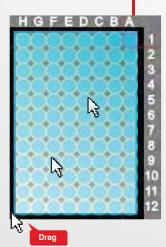

Image Cytometer Module

High Throughput for Capture and Analysis

Capture settings in one location can instantly be applied to all fields of view on a well plate. Users can select any or all wells to be scanned with uniform conditions for high reproducibility of data. This work flow can be completed in just three simple steps. The system will then automatically execute the capture without any additional user configuration.



STEP 1 Set capture conditions


STEP 2

Click and drag to specify the range of capture within a well

STEP 3 Click and drag to specify wells to capture

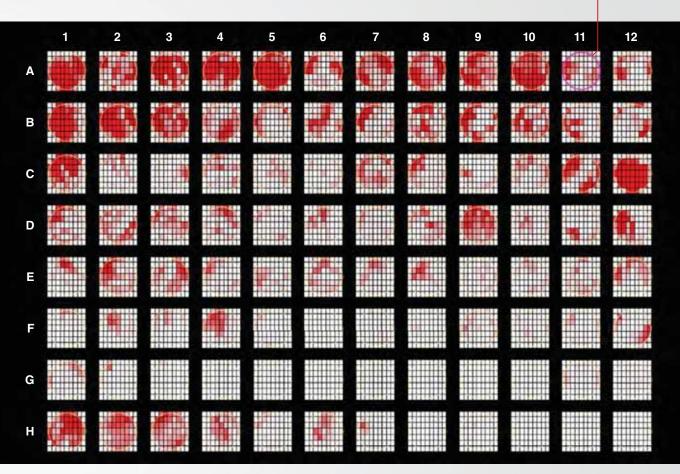

1CLICK

Image Cytometer Analysis

Accurate, High-Content Analysis with High-Resolution Images

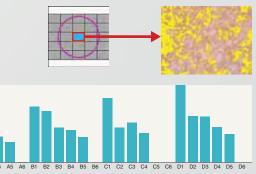
Set analysis conditions for a single image and apply to all data points automatically. This saves time and reduces variability from one image to the next. The BZ-X Series's advanced optics capture high-resolution images, resulting in highly precise data acquisition.

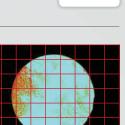
▲ Heatmap function Gradated display visually represents different measurement values between fields of view and wells

Statistical analysis

This enables the creation of graphs for each measured item, such as sample counts, area, and light intensity. As well as graphs by well and by field of view, each field of view and measured value can be combined to create graphs covering the whole plate as a target.

Stitched image of all wells





Click any well to highlight the related data.

Easily check image data at any location in a well

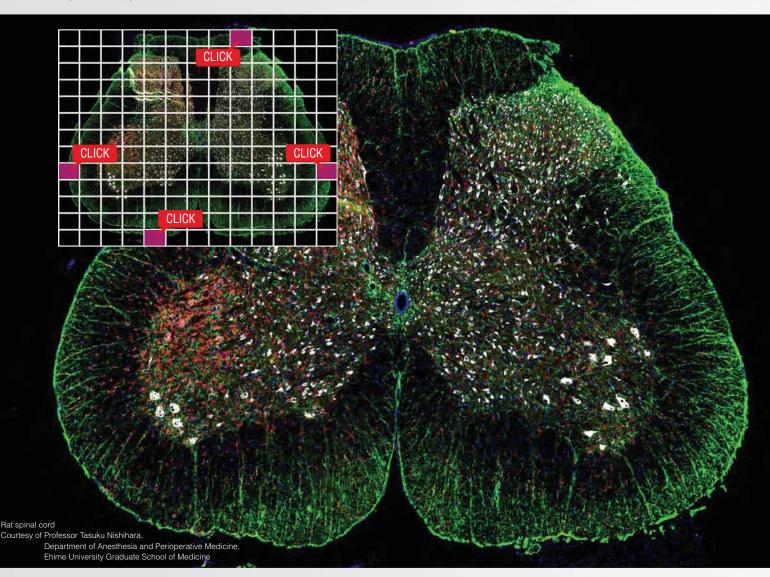
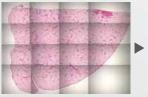


Image Stitching

High-Speed Capture of High-Resolution, Wide-Area Images

Viewing a specimen at high-magnification often requires an expansion of viewing area beyond a single field of view. Image stitching allows the user to easily capture an entire specimen at high-magnification, and seamlessly create a single high-resolution image. Up to 50,000 x 50,000 pixels can be rapidly joined together without stitch lines or brightness variations. A large quantity of images can be captured at a speed that is seven times faster than that of conventional methods.

Automatic specimen capture


Capture an entire specimen automatically by registering the coordinates of its outermost positions.

High precision shade correction

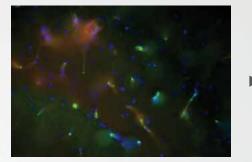
Uneven light intensity caused by lens aberration or non-uniform light sources appear as seams in the stitched image. This results in an unnatural appearance and affects the accuracy of quantification.

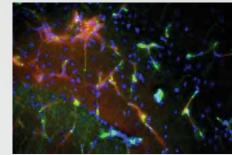
The BZ-X Series eliminates uneven light intensity with its high-precision shade correction algorithm in order to create seamless, high-resolution images.

Conventional stitched image

Uneven light intensity causes stitch lines

BZ-X Series stitched image

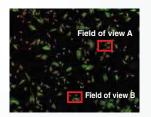

Shade correction eliminates stitch lines

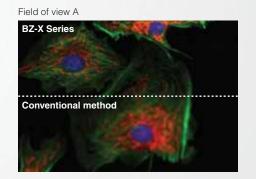

Full-focus Image Stitching

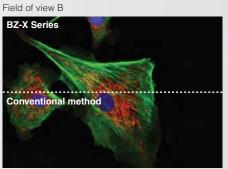
Fully-Focused Images of Thick Samples

The automated stage captures a Z-stack for each individual field-of-view being stitched. This allows for a fully-focused wide-area image to be obtained for thick or dense samples.

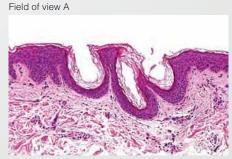
Conventional

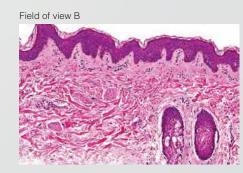



Auto-focus Image Stitching


Rapidly Focus Each Field of View

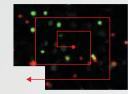
Each field-of-view is auto-focused prior to image capture. Optimally-focused stitched images of samples with height variations, such as an unevenly sliced tissue section, can be captured without user input.




Edge-focus Image Stitching

Set Z Point Positions for Fast, Focused Stitching

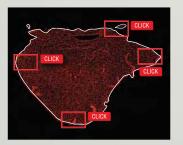
Set the focal plane for a few fields of view and then execute a rapid, single layer stitch with fewer captures. The Z axis will change gradually as the sample is scanned for rapid image stitching and minimal photobleaching.


Navigation

Easily Locate Areas of Interest


With a single click, adjacent fields-of-view are rapidly stitched together to create a navigation image of the entire sample. Clicking anywhere on the navigation screen will immediately move the stage to that location. The current field-of-view is always displayed on the navigation image, so users never lose sight of the relative viewing position, even at high magnifications.

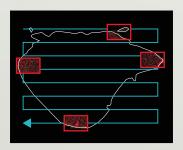
Current position High-speed scan and


Update navigation image based on XY position. Multi-Color

Micronucleus testing (genotoxicity test)

Image stitching made simple

STEP 1


While viewing the entire image of the specimen on the navigation screen, click the four points on the outside edge of the specimen to register their coordinates.

STEP 2

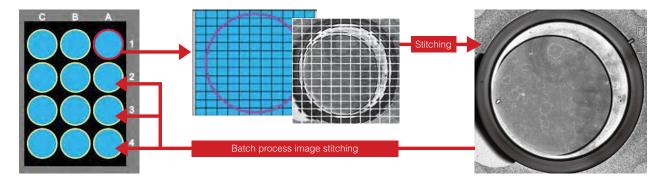
Save as Image

The stitched image is then captured without missing any part of the specimen. This eliminates the time and effort spent recapturing images due to some areas missing from the stitched image.

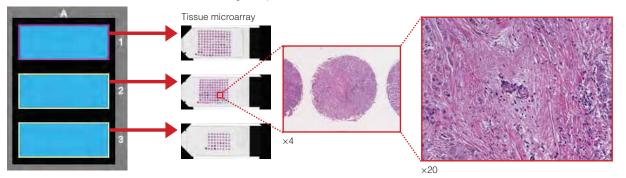
Multi-point & Multi-condition Capture

Efficient Image Capture of Multiple Specimens

Up to 999 coordinate points can be recorded. A variety of capture conditions such as magnification, exposure time, Z-stack settings, and image stitching can be set individually for each point. As with normal observation, simply click "Set" to register capture conditions. Multiple points of data can be obtained at the same time, and this function is also useful when performing repeated evaluations of the same location on multiple specimens, such as with sequential sections and well plates.

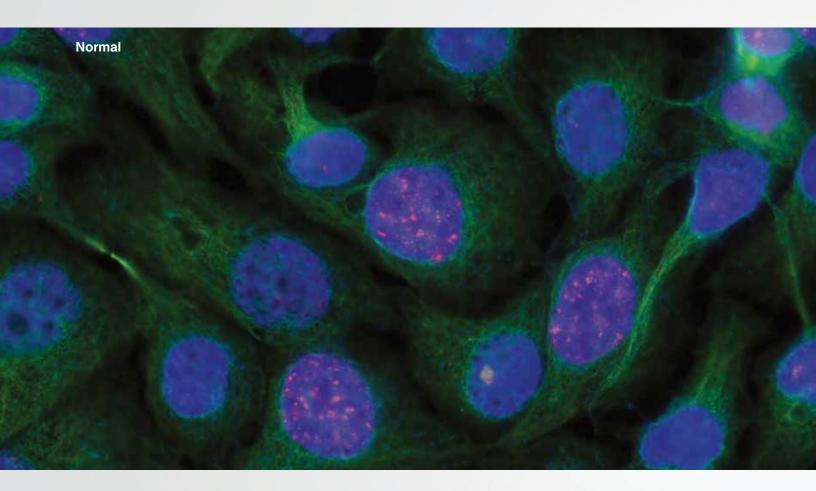


Batch Process Image Stitching


$\textbf{BZ-H4XD} \times \textbf{BZ-H4XI} \times \textbf{BZ-H4C}$

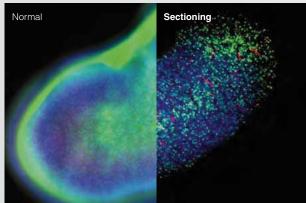
Stitch Multiple Samples

Automatically carry out image stitch processing for multiple wells using macros. Acquire high-quality images without compromising on lens magnification or image resolution.

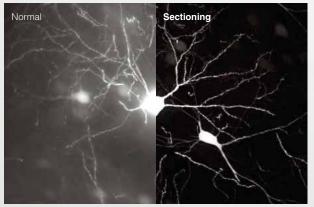

Whole slide scans The BZ-X800LE Wide Image Viewer saves uncompressed images with the highest possible resolution, allowing users to observe fine details of large samples.

Optical Sectioning

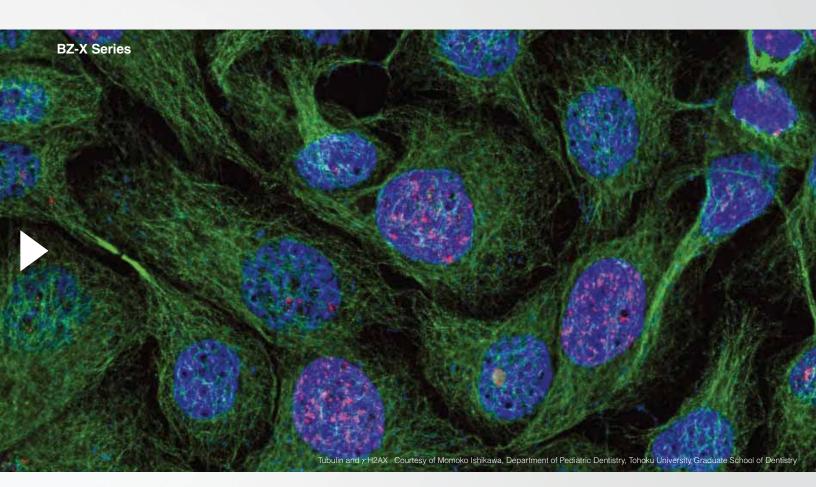
Capture Clear Images Without Fluorescence Blurring

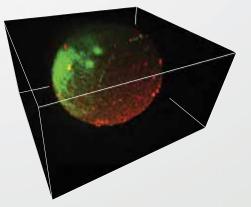

Easily capture high-definition images without the blurring caused by out-of-focus signals. The unique optical sectioning technology in the BZ-X Series uses an electronic projection element for structured illumination. Operation is simple and intuitive, allowing even first-time users to capture publication-quality images in seconds.

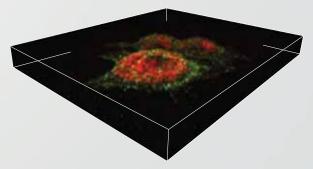



Clear capture of thick specimens

Optical sectioning accurately detects fluorescence signals in the desired focal plane, providing clear optical slices of thick samples. A wide range of samples, including animal cells, plant cells, and cultured tissue can be easily observed.






3D localization analysis

Optical sectioning provides high-accuracy, cross-sectional images without fluorescence blurring from other focal planes. Clear Z-stacks can then be transformed into realistic 3D renderings, allowing for accurate localization analysis.

Ascidiacea egg

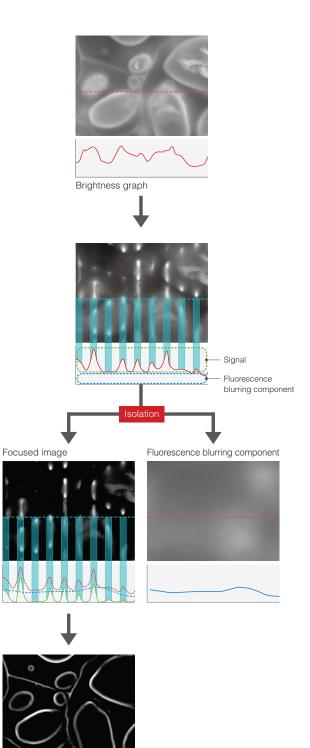
HEK293 cell

Courtesy of Assistant Professor Taku Uchida, Graduate Student Tsuyoshi Takeishi, Department of Neuroscience, Section of Integrative Physiology, Faculty of Medicine, Graduate School of Medicine, University of Miyazaki

Sectioning Algorithm

High-Precision Optical Sectioning Using White Light

The electronic projection element enables a high-speed structured illumination scan. When compared to the effects of lasers, the white light source minimizes damage to the specimen. The use of white light also provides the ability to image over a wide wavelength range, delivering high-precision optically sectioned images.


Normal image

Thick specimens cannot be captured with conventional widefield microscopes due to scattered light in the Z plane. This fluorescence blurring obscures true signals in the focal plane of interest.

BZ-X sectioning

STEP 1: Pattern projection

The light passes through the electronic projection element and a structured pattern is projected onto the desired focal plane. Only signals within this focal plane are illuminated by the excitation light.

STEP 2: Scan and capture

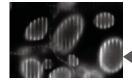
Multiple images are captured while the illumination pattern scans across the sample. Since the brightness of scattered signals does not change significantly as the pattern moves, the fluorescence blurring can be extracted and eliminated.

STEP 3: Sectioning image

The fluorescence blurring is eliminated from the multiple images captured. These images are then automatically combined to produce a clear optical section.

Benefits of Optical Sectioning

Electronic projection element


The electronic component provides a more rapid, flexible excitation light configuration than a mechanical slit.

POINT 2

needed.

POINT 1

Optimal pattern automatically determined based on magnification.

1D slit (×20)

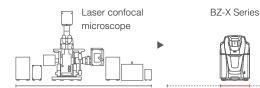
Sectioning is optimized with a single click.

No complex configuration or special skills

POINT 3

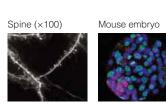
Pattern width and structure can be easily changed. A 2D pinhole pattern can be used for higher resolution capture.

2D pinhole (×20)


1D slit (×40)

White light source

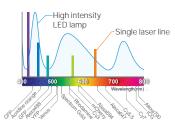
Easy for any user to capture high-resolution images, without damaging lasers.


POINT 1

Simple, compact setup.

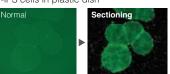
POINT 3

High-sensitivity detection using a monochrome cooled CCD reduces sample damage and photobleaching.



POINT 2

POINT 4


Simply change the filter to image any wavelength from UV to IR instead of dedicated laser lines.

Change pattern

T-iPS cells in plastic dish

Capture images in any container, including plastic-bottom multi-well plates. No complex configuration required.

Courtesy of Assistant Professor Kyoko Masuda, Hiroshi Kawamoto Laboratory, Institute for Frontier Medical Sciences, Kyoto University

More Accurate 3D Analysis Using Sectioning

Time-lapse

Temperature and CO₂ Regulation for Live-Cell Imaging

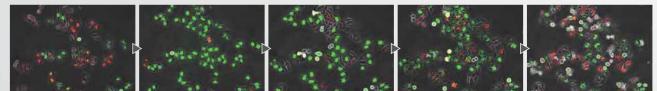
Perform time-series capture of brightfield, fluorescence, and phase contrast images at user-specified intervals. The temperature and CO₂ regulation chamber can hold a variety of vessels, including well plates, to create an ideal environment for specimens during prolonged time-lapse imaging.

Supports the installation of a stage-top compact incubator. Control temperature, CO₂ concentration, and humidity to perform extended imaging of live cells and cultured tissue.

> Small gas tanks make it easy to perform timelapse processes in places where there is no centralized piping or where the use of large tanks is difficult.

> An automatic switching function allows worryfree imaging over a longer time.

Use the touch panel to easily adjust temperature and CO_2 concentration.


Time-series Brightness Measurement Function

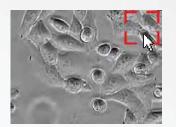
Quantify Changes Over Time

This can provide time-series measurement of changes in RGB brightness in time-lapse images, allowing for quantitative evaluations along the time axis for experiments such as changes in gene expression. The high-intensity LED light source experiences little fluctuation in light intensity over time, enabling accurate quantitative measurement even during extended time-lapse processes.

STR

FUCCI cell cycle checkpoints

Courtesy of Assistant Professor Atsushi Kaida, Oral Radiation Oncology Department, Tokyo Medical and Dental University



Position Adjustment During Time Lapse

Adjust the field of view during time lapse capture

Adjust the capture position in the X, Y, and Z directions during time lapse in response to morphology changes and temperature drift. The function is performed using previously captured images, so sensitive samples are spared from additional light exposure.

The target is about to move out of the viewing area

Readjust the X, Y, and Z capture position

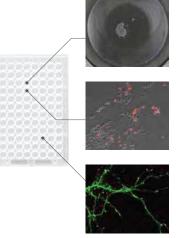


Image capture resumes using the updated position

BZ-H4XT Time-Lapse Module × BZ-H4XD Advanced Observation Module

Coordinate-specific condition settings

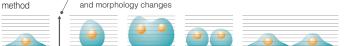
Different capture conditions such as focal plane, exposure time, lens magnification, filters, and Z-stack width/step size can be set individually for each registered point. Multiple samples with different conditions can be imaged in the same time-lapse experiment for increased efficiency.

For colony counting

Lens	Phase contrast 10×
Observation mode	Phase contrast image
Image stitching	7×9 images
Z-stack	N/A
Exposure time	1/70 s

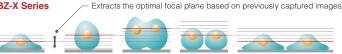
For transfection efficiency

Lens	Phase contrast 20×
Observation mode	Phase contrast + fluorescence overlay
Z-stack	1.5 µ pitch, 8 images
Exposure time	Phase contrast 1/50 s, fluorescence 1/5 s


For cultured nerve cells

Lens	Oil immersion 60×
Observation mode	Fluorescence 2CH overlay
Z-stack	0.5 µ pitch, 10 images
Exposure time	CH1 1/6 s CH2 1/12 s

Focus tracking function


The optimal focal plane is automatically selected from Z-stack data. This plane is then set as the center of Z-stack for the next capture to ensure that the sample continues to be in focus. This decreases the number of images captured at each interval, which not only reduces capture time and file size, but also reduces the risk of photobleaching.

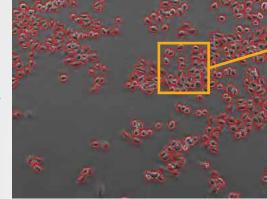
Sets a larger imaging range than necessary to allow for possible movement Conventional

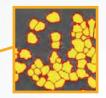
- · Larger Z-stack means more images captured
- More exposure to excitation light increases risk of photobleaching

BZ-X Series

- · Less images captured for more efficient review and analysis
- · Minimizes sample's exposure to excitation light and reduces risk of photobleaching

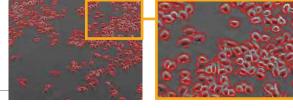
Hybrid Cell Count


High Accuracy Quantification Across Various Specimens

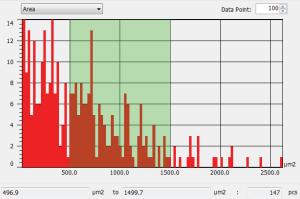

KEYENCE's original algorithm provides accurate quantification even for phase contrast images of cultured cells. The area of interest can be extracted and quantified quickly and accurately from phase contrast, brightfield, and fluorescence images. This easy-to-use software produces repeatable, user-independent results.

Phase contrast

With conventional software, it is difficult to automatically count cell images with low contrast between the measurement area and the background. Hybrid Cell Count uses an original algorithm that enables the outlines of cells to be extracted accurately.


Accurate separation and extraction of adjacent cells

Cell counting with conventional software



Uneven background brightness prevents cells from being extracted properly.

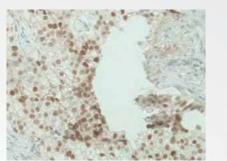
Low contrast makes it impossible to accurately differentiate and count the cells.

Data output in spreadsheet format

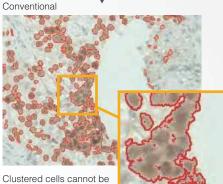
- Area
- Perimeter
- Major axis
 - Minor axis
 - Brightness (INT/MAX/MIN/AVE)
- Ferret diameter (X/Y) Count

RGB brightness (INT/MAX/MIN/AVE)

- Area ratio, etc.

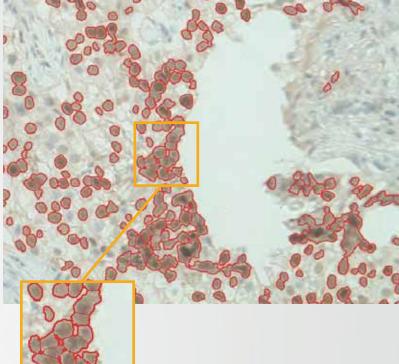

Court:	1230	Total (area);	5839.3 µm	a Area rat (spect)	nd area):	- 44	-1-	uma Me	asurement form
No.	A/92	Permiter	Nation and	Heler and Las	Anghoress (Boghtmess (Wightness (Englitmens (-	
1	6.14/12	10.9µm	4.7µm	1.9um	97646.6	845.0	318,0	568.9	
2	0.04/02	0.04	6.0µtts	0.0um	427.0	427.8	427.0	427.0	
3	1.74712	6.14m	2.2µm	1.5um	21897.0	571.0	356.0	442.8	
- 4	-0.5um2	2.0am	\$75.75.71	0.7µm	6160.0	507.0	399.0	440.0	
5	2.6910	7.3Lem	2.9µm	1.3µm	33719.0	551.0	349.0	455.7	
.6	1:00/762	3.3µm	1.2ym	0.9µm	12536.0	564.0	379.0	464.3	
7	0.3µm2	1.tum	0.667	Q.Ourri	1847.0	+87.0	433,0	451.8	
Average	4.7,012	6.8µm	2.5µm	L.Sum	e1297.7	723.1	340.5	609.9	
Standard D	10.06/72	6.8µm	2.461	1.400	228401.2	377.2	54,6	91.9	
Max	118.9(1)2	37,Apm	21.3im	11.5µm	2803018.0	2403.0	558.0	1161.4	
Mm -	0.0um2	0.0,0	0.0µm	0.Durti	356.0	156.0	8,0	356.0	
Totai	5839.3um2	8364.2µm	.3093.0j.m	1862.0µm	99996226.0	889439.0	416849,0	597938.9	
				Save Read			Number	of rown selected	

Close



Color extraction

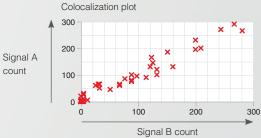
Cells are extracted based upon hue differences and brightness information. Even clusters of cells can be separated and accurately quantified.



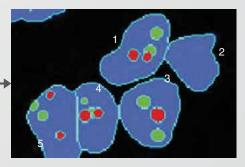
Courtesy of Koji Arihiro, M.D. Ph.D., Department of Anatomical Pathology, Hiroshima University Hospital

separated properly.

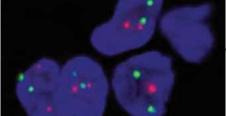
BZ-X Series

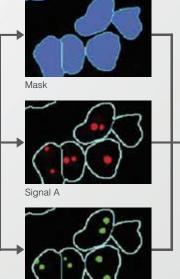


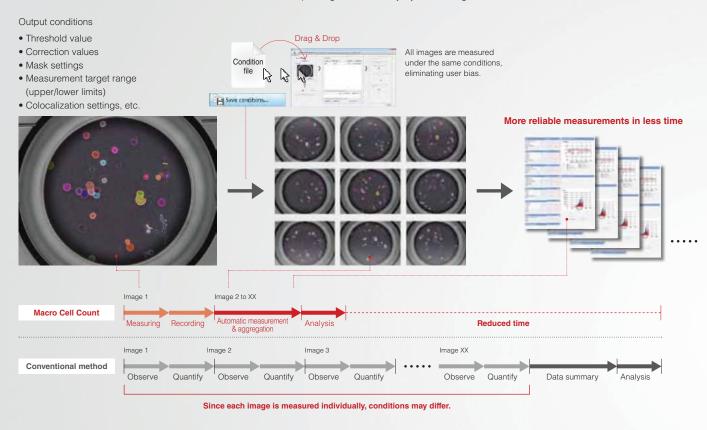
Borders of adjacent cells are recognized for separation of individual cells.


count

Masking function

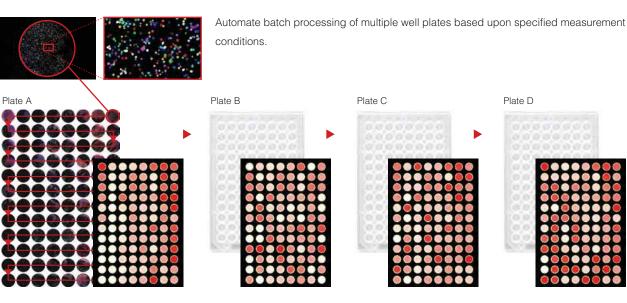

Users can specify a mask area from which to extract individual measurement areas. This allows for both individual measurement data and area ratios to be reported with ease. Up to two different extractions can be performed within the same mask area in order to quantify and compare multiple stains or conditions.

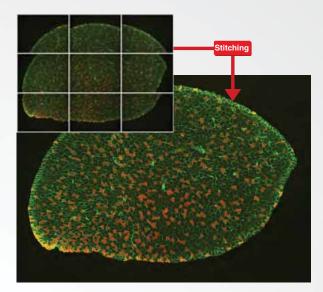




Macro Cell Count

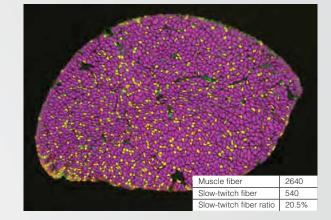
Batch Processing for Repeatable Quantification


Once the appropriate measurement parameters are set for a single image, the same conditions can be applied to multiple images. This drastically reduces the amount of time needed for measurement, while improving data reliability by eliminating variations in measurement conditions.

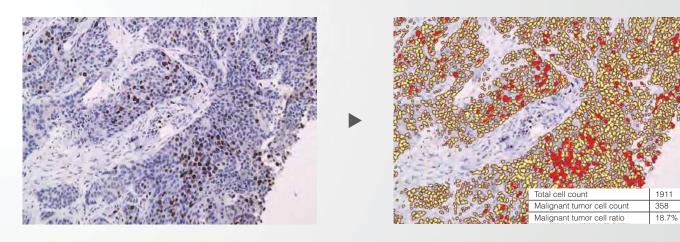

Batch Analysis of Multiple Plates

$\textbf{BZ-H4C} \times \textbf{BZ-H4XD} \times \textbf{BZ-H4XI}$

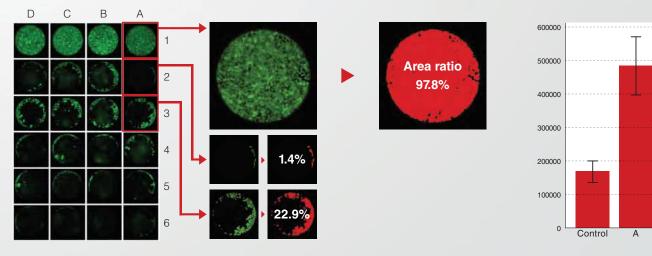
High-Content Screening of Multi-Well Plates



Hybrid & Macro Cell Count Application Examples



Slow-twitch skeletal muscle fiber ratio

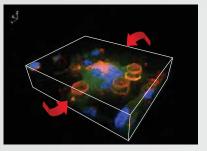

Courtesy of Lecturer Hideki Yamauchi, Division of Physical Fitness, Department of Rehabilitation Medicine, Jikei University

Malignant tumor cell (MIB-1) count

Cell migration assays using multi-well plates (24 wells)

3D Analysis

Accurate Analysis of 3D Localization


Transform Z-stacks into 3D renderings with a single click to accurately observe three-dimensional structures. Use new 3D measurement functions to quantify features such as shape and localization. Results can then be saved in image or video format for convenient viewing.

3D Display

Acrophages on nanomaterials

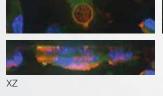
Intuitive operation

Rotation/ Click and drag to rotate

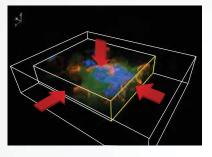
Advanced 3D analysis

XY cross section YZ cross section

XZ cross section


XYZ slicing

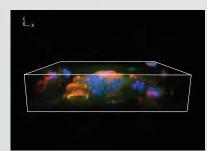
An image can be sliced at any XYZ position to observe the cross-sectional view.

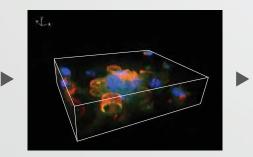


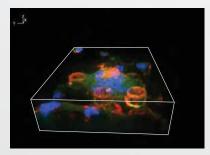
XY

Zoom/ Use the mouse wheel to zoom in/out

Sectional view/ Right-click to slice cross sections

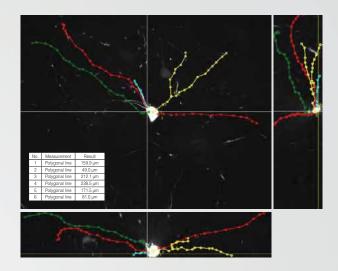

Maximum projection


YΖ


Pixels with the maximum brightness in the Z-axis are combined to display an image with a large depth-offield.

Video creation

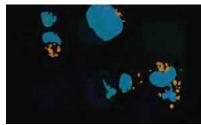
3D images can be saved and played back as a video. Since videos are saved in a standard format, they can be viewed in any standard software and embedded within presentations and other documents.



3D Measurement

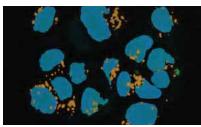
Click a measurement point on a cross section and scroll through the Z-stack images to accurately measure even complex 3D shapes, such as axons of neurons. The count function enables simple and convenient counting of 3D localization for FISH studies.

Intuitive measurement menu

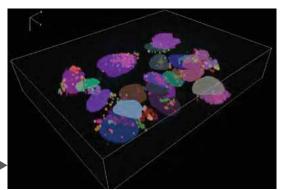


3D Cell Count

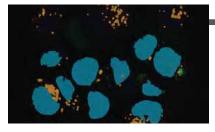
$\textbf{BZ-H4R} \times \textbf{BZ-H4C}$


One-Step Three-Dimensional Quantification

Z-Stack: Plane A



Instantly apply quantification conditions to an entire Z-stack. Quantify features such as volume, surface area, and intensity of extracted areas. Specified measurement conditions are applied to the Z-stack in real-time, allowing users to quickly view and optimize settings.

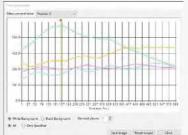

Z-Stack: Plane B

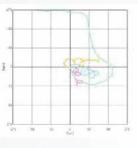
Measured areas that overlap on the Z axis are automatically integrated.

Z-Stack: Plane C

trans Tages	- 10									- 19 pr					- 664
Court	214	Technik	me).	01.00	P			Unamout and Date	n	× 511				11	T
No.		-	Infections.	Marriet	Mania and Sandrel 1	Coperate Designation	Fighter minister.	Approximation	Registers many -	10.41					
	*	1400	113,and	That.	1.6.00	Otion	1250 1250 1162 1162	28.0	184				11		t=
	χ.	2 hours	#Liped	Tilart	£8.m.	TWITE	1210	20.7	1001	2.1					
		I speck	11.Jund	Kiget.	12.00	signification and the second s	THE	128.2	38.1	1.00					-
	× .	induced.	Liped	2.hurt	E.kew.	Mental International Contractions of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contractional Contractionae Contractionae Contractionae Contractico	(294)	2610	18.0	10.0				1	
	κ.	Lipst.	\$14ml	2.545	6.300	10062 11072	71.0	296.2	014	100				1	
		induced.	t.iLind	Lines.	11.m	11023	100	1,912	- 45K.2 (713 -						
	۲.	(dam)	13,440	E-las-	-02.00	3112	87.0	178	6718 m.						
4.99		1440	11yest	1.149	A. Com.	(Miles)	761	261	1051	1.2-1					F
Manipud Dinken	44	(April	hiped.	1799	10, Luin,	101943	1941	1251	144.1	24					
	-	13,002	10.1/452	11.000	1.Auto	144,000.0	E140	A110	2218	A					-
	6÷	12,411	1.1.44	1.149	1.6.00	261	767	14.2	1041	23.1		1.00			
		10.00	1913/462	100.046	11.00	/0340413	2061	106112	11/542.8	1.50	1000	1111			10
						The Res		- Bairdie at last solar		1.81	11	6 H		and the second second	Ц

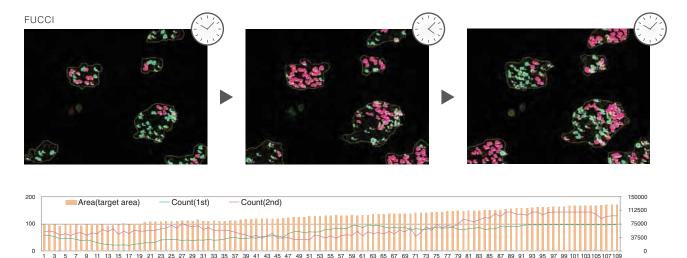
Motion Analysis


Track Movement Over Time


Select a target and track it using brightness, hue, and appearance information. Automatically record changes in coordinates to measure travel range, speed, and movement over time.

Time-series data output

			194.9					Sec.1					947
	2/w	Indiana.	Bigines .	Paintend	- Builder X	- Arei	Biglinesi -	Distant.	Facilian (Fundam b	Jani	Biglines -	Barres. 7
100	Albert.	1011		111 ave	14.300	dilari.	12748	81.0	101.4cm	25/100	Num	1421	100.0
-	All section of the local secti	14010		212 944	10.44	44.00	1110	410	7914-	101	An April	1421	140
181.1	Stard'	615.4	- 16.4	373.Jan	Tim Spec	418400	- Wite		- 20 Ja-	1001.100	Million of	lates	10.4
1.1.1	Stands	2062	40.0	215.360	1 Cit. Spec	alline	inc.i	818	108.5.0	300 1.mm	Hilperil.	(40)	
-	293000	040.0	803	24.60	117 April	44,400	794.0	with.	and a	27.5.0	4 April		
194	with mill	3803		276.3pm	1110	41,000	THUS	80.	141.0-1	\$17.1cm	4140-1	-0011.0	18.7
-101	Alleria .	1001.7	1914.	25.4	1 Mill Spares	413,000	64248	10.5	96.0cm		4176-12	77816	
	Million C.	945.2	61.0	25.94	150 Ser	423/02	0048	10.1	20,00	36.1er	41.5pm	77118	142
	18 Juni	00543	75.1	ditter.	180 Garr	40,40	644.0	80.0	101.1.0	28	4 million	7299-0	1007
2	They are	10542	- (41)	10.00	1974er	414/102	6068	811	255.50	29100	41.0pm2	3,191	167
	=t2pml	98062	844	100 100	10.54	41864	42718	95,5	10.hm	1044	Adapti	74/55	
													- P.
S-ection -	11500	7228.1	94.1	272 Spin-	1.178 Juni	0.664/2	6323.1	67.2	805.0.00	255m	- Kilard	7994.2	
wind	Alan2	800.0	84	Milan.	18 April	124-2	101.4	1.1.1	13.2.m	21.6.00	William 2	1773.8	68
Ne	\$1.5mm	year	162.3	STL BOT	Lither	44.5,45	85218	8.4	\$10.1µm	254.lum	106.8pm2	17544	
184	38.505	1974	94.5	26.0	10.64	10 and	4855.0	703	272.5um		0.000	60	45
140	Will be a	100000	436541	Quality	3465 m	Gardenie	2013014	10123	042101-	MATE INT	and the second	100001	1242

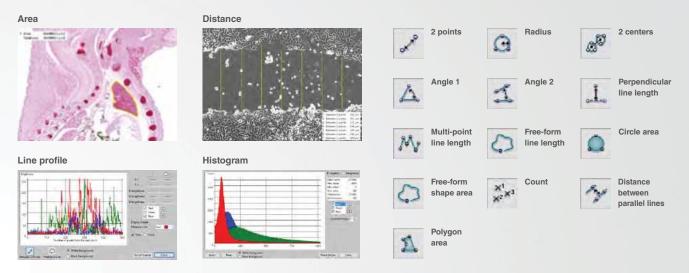


Time-series Cell Count

$BZ-H4K \times BZ-H4C$

Quantify Specimen Changes Over Time

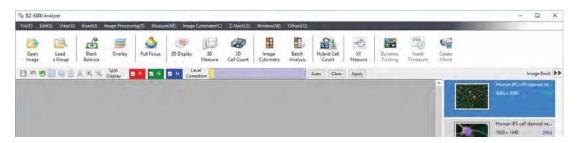
Perform batch processing of high-precision quantification for video and time-lapse recordings. Quantify cell counts, surface areas, and signal intensities of extracted targets, and visualize results with time-series graphs. The data can then be exported for more in-depth analysis, such as correlating surface area expansion with changes in signal intensity.



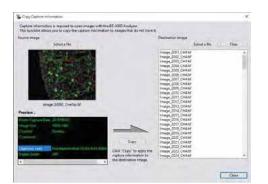
32

Measurement

Perform Point-and-Click 2D Measurements


A variety of 2D measurements can be made directly on the image simply by clicking the desired end points. This enables easy and accurate measurement, such as quantifying the axon length of neurons. RGB brightness values can also be quantified and visually displayed on a histogram.

BZ-H4A BZ-X800LE Analyzer

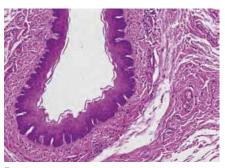

Advanced Analysis Software

Perform analysis in the easy-to-use BZ-X800LE Analyzer. Capture conditions are stored in image metadata for automatic processing of Z-stacks, time-lapse, image stitching, and quantification.

Analyze Data Captured with Previous Models

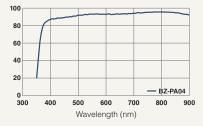
The "BZ-X800 Image Converter" analysis application is included as a standard feature. This allows data that has been captured with previous BZ Series systems to be converted to the latest format. Group settings data can also be converted, allowing the various functions of the BZ-X800LE analysis application to be used for advanced analysis.


Bright and Clear All-in-One Fluorescence Microscope Lenses



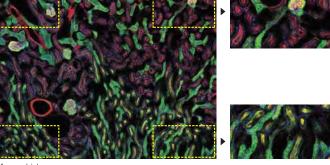
Bright and clear with a wide wavelength

The wide wavelength range from ultraviolet to near-infrared yields a high transmission ratio to clearly observe both fluorescence and brightfield images. Ideal for live cell imaging as bright fluorescence images can be obtained even with weak excitation light, minimizing damage to the cells.



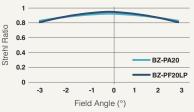
Esophagus

The wide wavelength range from ultraviolet to near-infrared yields a high transmission ratio.

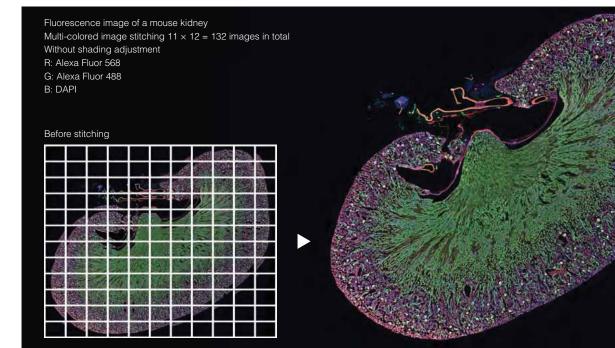

With low phototoxicity due to minimal light diffusion and absorption by organic materials, the lenses have been greatly improved to handle the wavelength range of 650–900 nm, indispensable for deep observation and live-cell imaging.

High-grade optical design that minimizes distortion at the periphery of the field of view

Thoroughly corrects color and screen field curvature aberrations to respond to all capture conditions, from low magnification to high magnification, and from ultraviolet to near-infrared. Maintains high level of flatness extending to the periphery of the field of view. Can easily capture natural, vivid, multi-colored stitched images seamlessly.

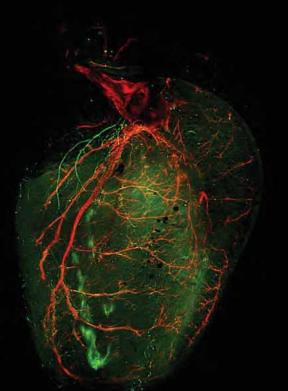


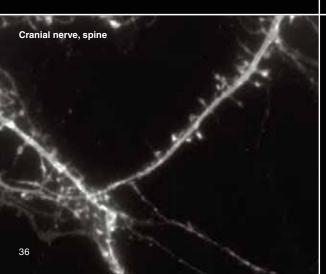
Mouse kidney


Strehl

Achieves a high Strehl ratio from the center of the optical axis to the periphery

What is the Strehl ratio?

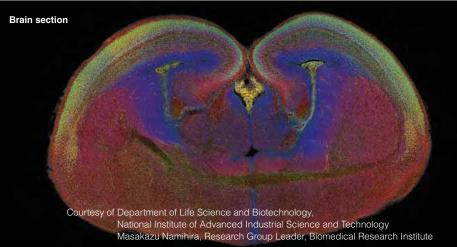

The Strehl ratio is the ratio of actual light intensity when compared to the maximum light intensity of the point source in an ideal optical system with absolutely no aberrations. It is generally preferable for objective lenses to have a ratio of 80% or higher.

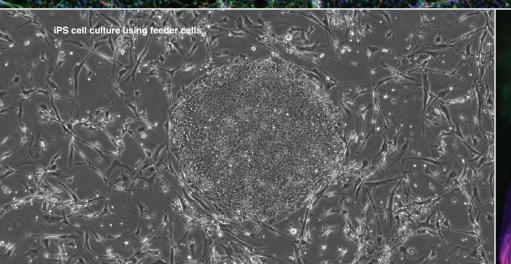

BZ Series Application Examples

NT2N cancer-derived stem cells, neural differentiation

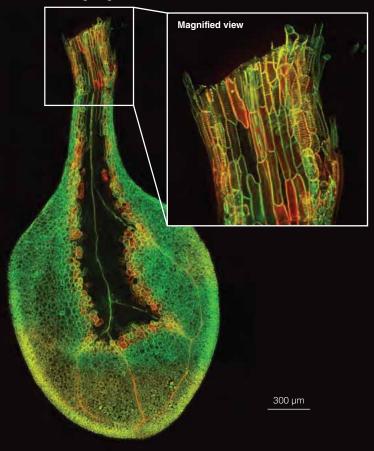

Heart, sectioning image

Courtesy of Dr. Koki Yokoyama, Department of Cardiovascular Medicine, Osaka University Hospital Yokoyama et al. PLoS One. 2017 Jul 28;12(7):e0182072. doi: 10.1371/journal.pone.0182072. eCollection 2017.


Medical and Life Sciences


Mouse retina flat mount, angiogenesis

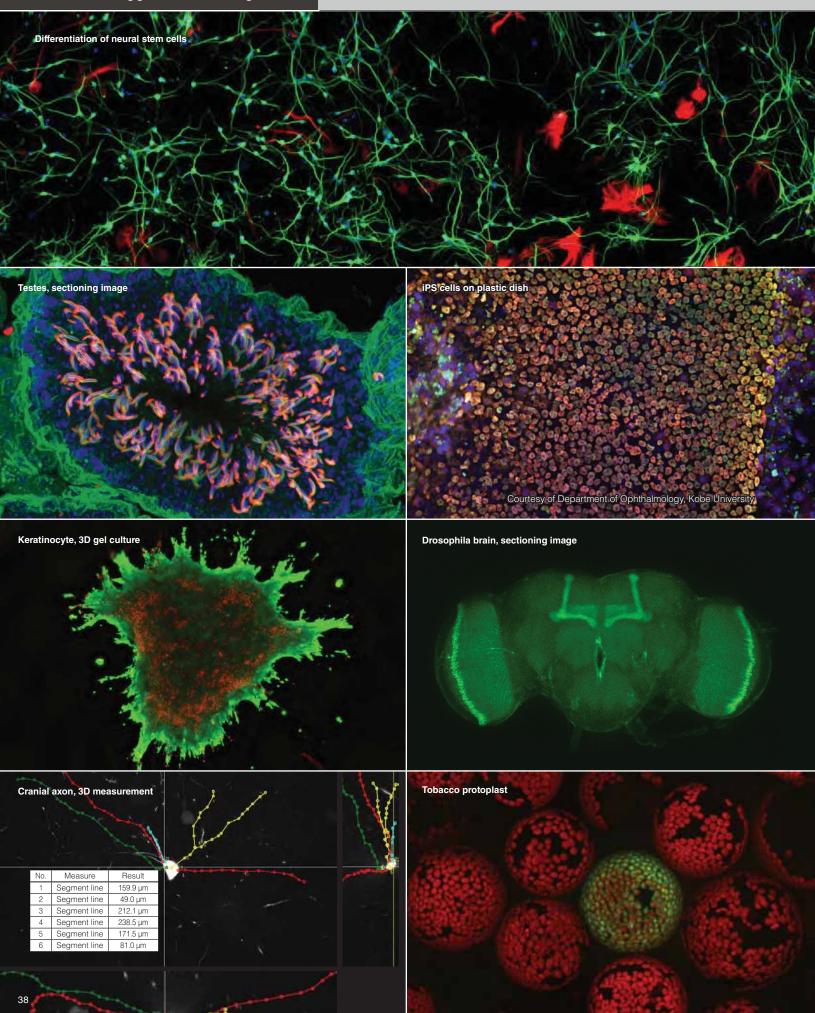
Courtesy of Professor Shigeki Higashiyama, Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine



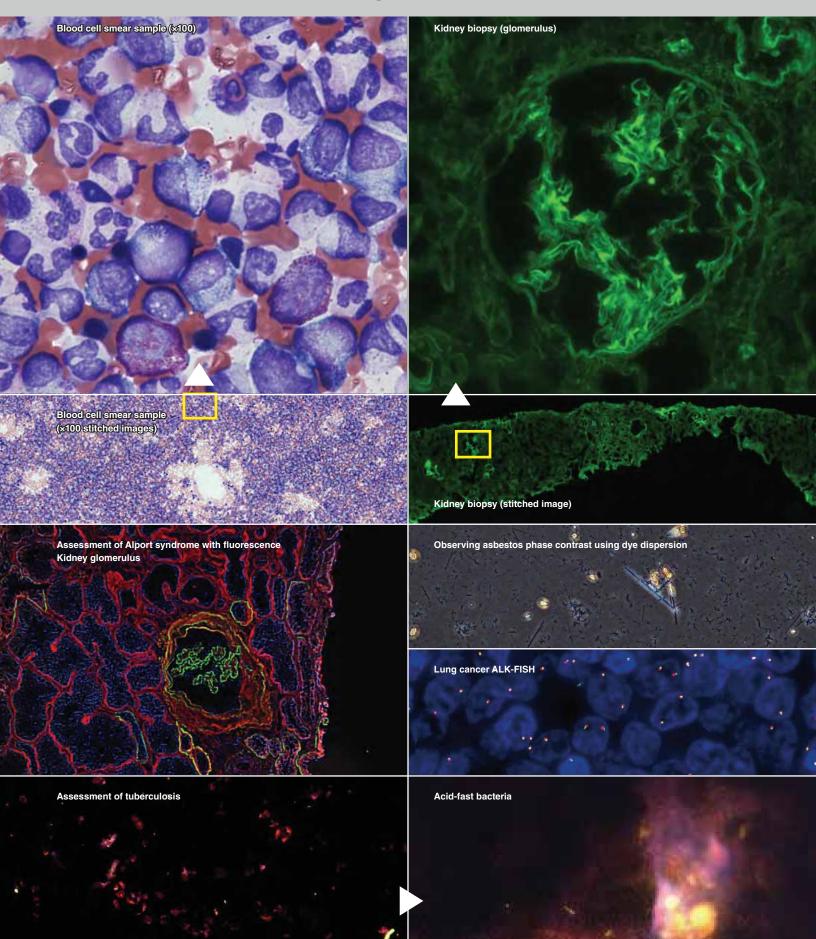
Courtesy of Assistant Professor Asuka Morizane, Department of Biological Repair, Field of Clinical Application, Center for iPS Cell Research and Application, Kyoto University

Water flea nerve and muscle, sectioning image

Arabidopsis duct, sectioning image

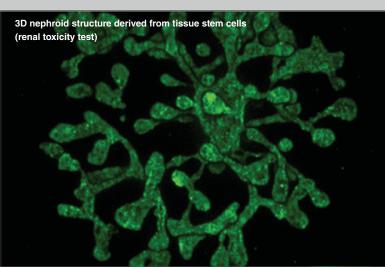

Courtesy of Assistant Professor Yasuhiro Shiga, Laboratory of Environmental Molecular Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences

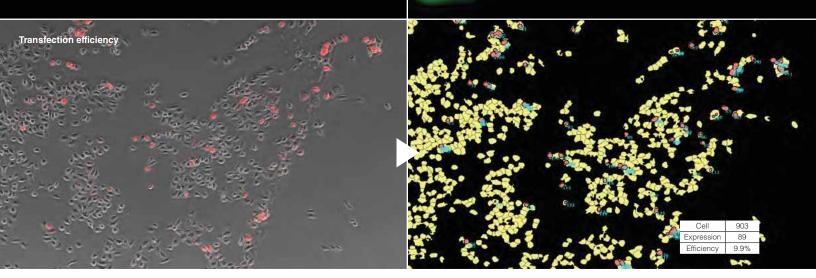
Whole mouse embryo


Courtesy of Lecturer Shingo Nakamura, Division of Biomedical Engineering, National Defense Medical College

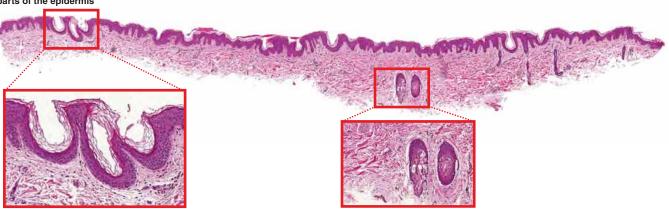
BZ Series Application Examples

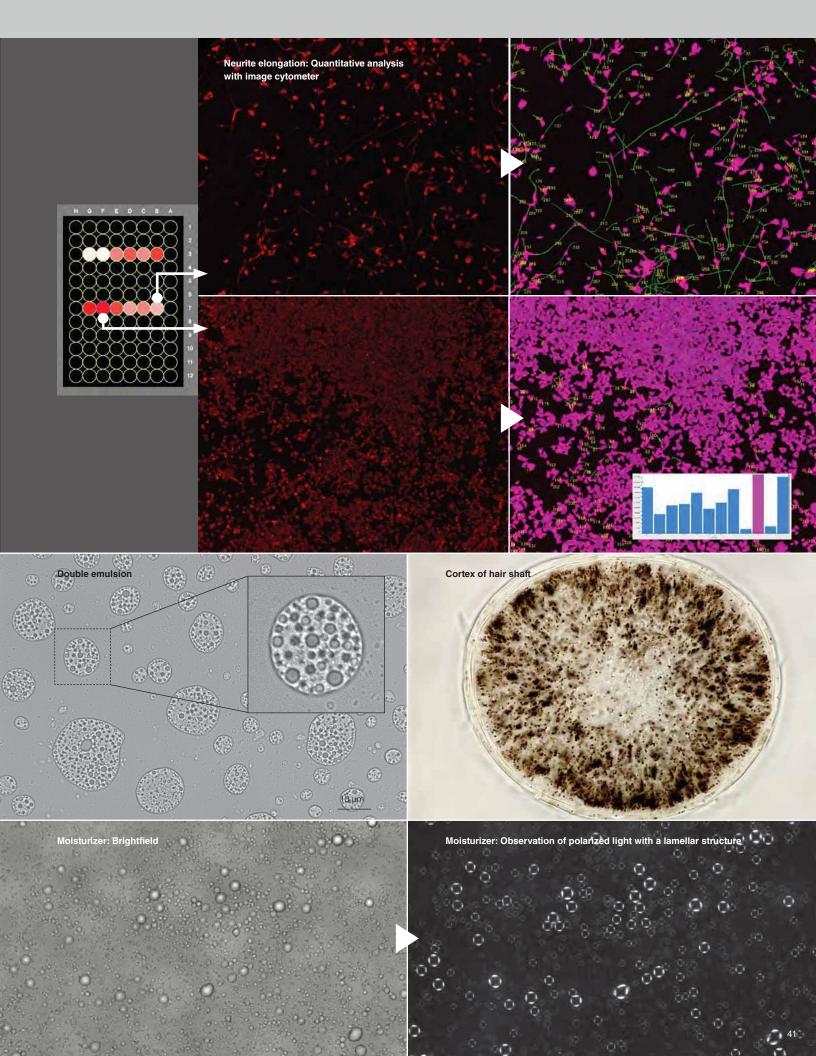
Medical and Life Sciences


Hospitals/Clinics



Cleared kidney tissue, whole mount


Pharmaceuticals and cosmetics



Comet assay (genotoxicity test)

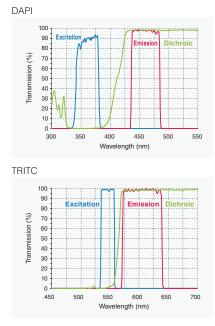
UV-damaged parts of the epidermis

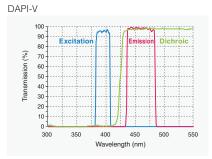
Specifications of BZ Lens

(1) Plan Ap	ochromat 2X	BZ-PA02	NA 0.10	WD 8.5 mm 0.33"	
(2) Plan Ap	ochromat 4X	BZ-PA04	NA 0.20	WD 20.0 mm 0.79"	
(3) Plan Ap	ochromat 10X	BZ-PA10	NA 0.45	WD 4.0 mm 0.16"	
(4) Plan Ap	ochromat 20X	BZ-PA20	NA 0.75	WD 0.6 mm 0.02"	
(5) Plan Ap	ochromat 40X	BZ-PA40	NA 0.95	WD 0.25-0.17 mm 0.010" to	0.007"
(6) Plan Ap	ochromat 60X Oil	BZ-PA60	NA 1.40	WD 0.13 mm 0.005"	Oil immersion
(7) Plan Ap	ochromat 100X Oil	BZ-PA100	NA 1.45	WD 0.13 mm 0.005"	Oil immersion
(8) Plan Fl	uorite 4X PH	BZ-PF04P	NA 0.13	WD 16.5 mm 0.65"	Phase contrast
(9) Plan Fl	uorite 10X PH	BZ-PF10P	NA 0.30	WD 14.5 mm 0.57"	Phase contrast
(10) Plan Fl	uorite 20X LD PH	BZ-PF20LP	NA 0.45	WD 8.8-7.5 mm 0.35" to 0.30"	Phase contrast
(11) Plan Fl	uorite 40X LD PH	BZ-PF40LP	NA 0.60	WD 3.3-2.2 mm 0.13" to 0.09"	Phase contrast

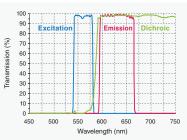
Options

- BZ-X800LE desktop PC 972326
- Wide monitor 972072
- Temperature and CO₂ regulation chamber (with mixing unit) 972082
- Temperature and CO₂ regulation chamber (for 5% CO₂ gas) 972083
- Immersion oil 971806

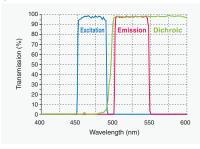


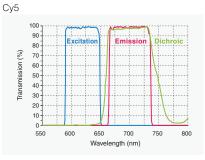

BZ-X blank filter cube **OP-87767**

Specifications of Fluorescence Filter Sets


				Units: (nm)
Set name	Model	Excitation wavelength	Emission wavelength	Dichroic mirror wavelength
BZ-X filter DAPI	OP-87762	360/40	460/50	400
BZ-X filter DAPI-V	OP-88359	395/25	460/50	425
BZ-X filter GFP	OP-87763	470/40	525/50	495
BZ-X filter TRITC	OP-87764	545/25	605/70	565
BZ-X filter TexasRed	OP-87765	560/40	630/75	585
BZ-X filter Cy5	OP-87766	620/60	700/75	660

Spectra of Fluorescence Filters

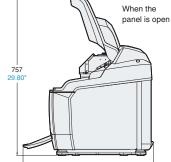




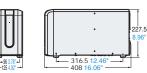

Specifications

Model		BZ-X800LE/BZ-X810
	Basic optical system	Inverted fluorescence phase contrast microscope
	Objective lenses	BZ Series infinite optical system
	Observation modes	Brightfield, Fluorescence (wide-field/sectioning), Phase contrast (PhL, Ph1, Ph2), Oblique illumination
	Objective lens switching	Six-mount electronic revolver
	Image-formation optical system	Fixed image-forming lens, electronic LC filter insertion/removal mechanism
	Motorized XY stage	$114 \times 80 \text{ mm } 4.49^{"} \times 3.15^{"}$ stroke, minimum 1 µm pitch min.
	Motorized Z stage	8 mm 0.31" stroke, minimum 0.1 μm pitch min.
Microscope unit	Motorized filter turret	Up to four filters can be mounted. Automatic position recognition and automatic excitation shutdown during filter replacement
	Fluorescent incident illumination	Optical sectioning system
	Fluorescence dimming mechanism	Electronic dimming (0.3%, 5%, 10%, 20%, 40%, 100%)
	Transmitted illumination optical system	Operating distance: 45 mm 1.77", Pop-up mechanism (with automatic lamp shut off function)
	Transmitted illumination mechanism	Electronic brightfield aperture (0%, 20%, 40%, 60%, 80%, 100%)/Phase contrast slit (PhL, Ph1, Ph2)
	Transmitted light source	3.7 W LED
	Fluorescent light source	40 W LED
	Specimen enclosure	The stage is fully contained in a built-in darkroom
	Image receiving element	2/3 inch, 2.83 million pixel monochrome CCD (colorized with LC filter)
	CCD cooling mechanism	Peltier cooling: 5°C 41°F (Reduction amount: 25°C 45°F)
	Output signal, gradations	14-bit/8-bit monochrome, 8-bit R/G/B
	Frame rate	15 fps for monochrome recording (up to 95 fps with binning), 8.5 fps for color recording
	Binning	On-chip binning (2 × 2, 3 × 3, 4 × 4, 8 × 8, 12 × 12)
	Number of pixels in recorded image	4080 × 3060 max (12.5 megapixel, high-quality interpolation)
Camera unit	Video capture	8-bit monochrome: 15 fps for 1280 × 960 With binning: 29 fps for 960 × 720, 40 fps for 640 × 480, 50 fps for 480 × 360, 75 fps for 240 × 180, 100 fps for 160 × 120 Color: 8.5 fps for 1280 × 960
	Electronic shutter	Auto; 1/7500 to 60 sec. (77 increments)
	Gain	0 dB, +6 dB, +12 dB, +18 dB, +24 dB
	White balance	Push-set, manual
	Black balance	Push-set, manual
	Observation software	Multi-color image capturing, Auto focus, Quick full-focusing, Scale display, Electronic revolver control, Electronic stage control
	Applicable OS	Windows 10 [®] Professional 64 bit
	PC interface	USB2.0
	Ambient temperature	+15 to 35°C 59 to 95°F
	Relative humidity	35 to 80% RH (No condensation)
Controller	Dimensions	Head: 517 (H) × 340 (W) × 496 mm (D) 20.35 [°] (H) × 13.39 [°] (W) × 19.53 [°] (D) ^{*1} Controller: 227.5 (H) × 125 (W) × 408 mm (D) 8.96 [°] (H) × 4.92 [°] (W) × 16.06 [°] (D)
Controllor	Weight	Head: Approx. 33 kg 72.75 lb, Controller: Approx. 4.8 kg 10.58 lb
	Power supply	100 to 240 VAC ± 10%, 50/60 Hz
	Power consumption	200 VA or less
	Overvoltage category	
	Pollution degree	2
	BZ-H4XF/Sectioning Module	Optical sectioning image mode
	BZ-H4XD/Advanced Observation Module	Navigation, Image stitching, Z-stack, Coordinate-specific condition setting
Functional Modules	BZ-H4XI/Image Cytometer Module	Batch capture (user-specified areas/all areas/random areas) *BZ-H4XD required/Image cytometer analysis, batch analysis *BZ-H4C required
	BZ-H4XT/Time-lapse Module	Time-lapse imaging, Video capturing, Time-series brightness measurement
	BZ-H4A/Advanced Analysis Software	Image stitching, Haze reduction, Full focus
	BZ-H4M/Measurement Application	Dimension measurement, Area measurement, Brightness measurement (line profile, histogram)
Analysis	BZ-H4R/3D Application	3D display, 3D measurement, XYZ slicing, Maximum projection, Video saving, (with addition of BZ-H4C) 3D cell count
· ·	BZ-H4K/Motion Analysis Application	Motion tracking, Motion analysis, (with addition of BZ-H4C) Time-series cell count
Applications	BE INTENIOUSITY INDUSTRY SIG / ISPITOUTION	
Applications	BZ-H4C/Hybrid Cell Count	Cell count (Phase contrast, Brightfield, Fluorescence), Mask cell count

*1 Panel closed • Windows 10[®] is a registered trademark of Microsoft Corporation in the United States.


Dimensions

Head unit BZ-X810


- 340 13.39"

-614 24.17" -

Units: mm inch

Controller unit BZ-X800LE

Imaging and analysis examples, customer feedback, and scientific articles

Access the latest information on fluorescence microscopes

www.keyence.com

SAFETY INFORMATION

Please read the instruction manual carefully in order to safely operate any KEYENCE product.

CONTACT YOUR NEAREST OFFICE FOR RELEASE STATUS

KEYENCE CORPORATION OF AMERICA Head Office 500 Park Boulevard, Suite 200, Itasca, IL 60143, U.S.A. PHONE: +1-201-930-0100 FAX: +1-855-539-0123 E-mail: keyence@keyence.com AL Birmingham CA San Jose CO Denver IL Chicago MO St. Louis NC Raleigh PA Philadelphia TN Nashville MI Detroit CA Cupertino MI Grand Rapids NJ Elmwood Park PA Pittsburgh AR Little Rock IN Indianapolis **OH** Cincinnati TX Austin FL Tampa AZ Phoenix CA Los Angeles GA Atlanta KY Louisville MN Minneapolis NY Rochester OH Cleveland SC Greenville TX Dallas NC Charlotte MO Kansas City UT Salt Lake City CA San Francisco CA Irvine IA lowa MA Boston **OR** Portland TN Knoxville **KEYENCE CANADA INC.** KEYENCE MEXICO S.A. DE C.V. Head Office PHONE: +1-905-366-7655 FAX: +1-905-366-1122 E-mail: keyencecanada@keyence.com PHONE: +52-55-8850-0100 FAX: +52-81-8220-9097 Montreal PHONE: +1-514-694-4740 FAX: +1-514-694-3206 Windsor PHONE: +1-905-366-7655 FAX: +1-905-366-1122 E-mail: keyencemexico@keyence.com

The information in this publication is based on KEYENCE's internal research/evaluation at the time of release and is subject to change without notice.

Company and product names mentioned in this catalog are either trademarks or registered trademarks of their respective companies. The specifications are expressed in metric units. The English units have been converted from the original metric units. Unauthorized reproduction of this catalog is strictly prohibited.

Copyright © 2022 KEYENCE CORPORATION. All rights reserved.

KA1-1099

WA Seattle

WI Milwaukee